Bilbao webinar 20/05/2020

CURVATURE FLUCTUATIONS FROM DISORDER DURING INFLATION

Marcos A. G. García

IFT - UAM

1902.09598, 2001.09158 with M. Amin, D. Green, S. Carlsten

Complexity in the early universe

Does the simplicity of the data reflect the simplicity of the underlying theory, or does it emerge from complexity?

Marcos A. G. García. Bilbao webinar 20/05/2020

Complexity in the early universe

Complexity in the early universe

$$S = \frac{1}{2} \int \sqrt{-g} d^4 x \left[c(t+\pi)\partial_\mu \pi \partial^\mu \pi + \partial_\mu \chi \partial^\mu \chi - \left(M^2 + m^2(t+\pi) \right) \chi^2 \right]$$
$$\simeq \frac{1}{2} \int \sqrt{-g} d^4 x \left[c(t)\partial_\mu \pi \partial^\mu \pi + \partial_\mu \chi \partial^\mu \chi - \left(M^2 + m^2(t) \right) \chi^2 - \frac{dm^2}{dt} \chi^2 \pi + \cdots \right]$$

ANTINE POR AL

 $c=2M_P^2|\dot{H}|$

Marcos A. G. García. Bilbao webinar 20/05/2020

$$S = \frac{1}{2} \int \sqrt{-g} d^4 x \left[c(t+\pi) \partial_\mu \pi \partial^\mu \pi + \partial_\mu \chi \partial^\mu \chi - \left(M^2 + m^2(t+\pi) \right) \chi^2 \right]$$

$$\simeq \frac{1}{2} \int \sqrt{-g} d^4 x \left[c(t) \partial_\mu \pi \partial^\mu \pi + \partial_\mu \chi \partial^\mu \chi - \left(M^2 + m^2(t) \right) \chi^2 - \frac{dm^2}{dt} \chi^2 \pi + \cdots \right]$$

$$M^2 = 2H^2$$

$$\downarrow$$

$$X_k \equiv a \chi_k$$

$$= \alpha_{k,j} \frac{e^{-ik\pi}}{\sqrt{2k}} + \beta_{k,j} \frac{e^{ik\pi}}{\sqrt{2k}}$$

$$M^2 = 2H^2$$

$$\langle m_j \rangle = 0$$

$$\langle m_i m_j \rangle = \sigma^2 \delta_{ij}$$

$$\langle m_i m_j \rangle = \frac{\langle N_s \rangle}{N_s} = \frac{\langle N_s \rangle}{N_s}$$

CONTRACT AND AND

Marcos A. G. García. Bilbao webinar 20/05/2020

Marcos A. G. García. Bilbao webinar 20/05/2020

10 Percent

Marcos A. G. García. Bilbao webinar 20/05/2020

10 Percent

Ant. 91

 $\langle Z_k(t)Z_{k\prime}(t')\rangle = \mu_2\left(\mathcal{N}_s(\frac{\sigma}{H})^2\right)H\min\left[t-t_k,t-t_{k\prime},t'-t_k,t'-t_{k\prime}\right]$

Marcos A. G. García. Bilbao webinar 20/05/2020

Marcos A. G. García. Bilbao webinar 20/05/2020

To lowest order in
$$\pi$$
, with $\zeta \simeq H\pi$ and $\langle \zeta(\mathbf{k})\zeta(\mathbf{k}')\rangle = \frac{2\pi^2}{k^3}\Delta_{\zeta}^2(k)\,\delta^{(3)}(\mathbf{k}+\mathbf{k}')$,

$$\hat{\pi}''(\mathbf{x},\tau) + 2\mathcal{H}\hat{\pi}'(\mathbf{x},\tau) - \nabla^2 \hat{\pi}(\mathbf{x},\tau) = -\frac{a(\tau)}{2c(\tau)} \frac{dm^2(\tau)}{d\tau} \hat{\chi}^2(\mathbf{x},\tau),$$

$$\begin{split} \delta\Delta_{\zeta}^{2}(k) &= 4\pi^{2}(\Delta_{\zeta,0}^{2})^{2}\frac{k^{3}}{H^{4}}\int d\tau' d\tau'' \,\tau'\tau'' \,G_{k}(\tau,\tau') \,G_{k}(\tau,\tau'') \frac{dm^{2}(\tau')}{d\tau'} \frac{dm^{2}(\tau'')}{d\tau''} \\ &\times \int^{\Lambda(\tau)} \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} \,\left[X_{p}(\tau') X_{p}^{*}(\tau'')\right]_{\mathrm{AS}} \left[X_{|\mathbf{p}-\mathbf{k}|}(\tau') X_{|\mathbf{p}-\mathbf{k}|}^{*}(\tau'')\right]_{\mathrm{AS}} \end{split}$$

•
$$\mathcal{O}_{\mathrm{AS}} \equiv \mathcal{O} - \mathcal{O}_{\mathrm{vac}}$$

•
$$\Lambda(\tau) \equiv (Hw\tau)^-$$

• Start: $|k_0 \tau| = 1$. End: $|k_f \tau| = 1$

1

Marcos A. G. García. Bilbao webinar 20/05/2020

$$\left\langle \delta \Delta_{\zeta}^{2}(k)
ight
angle \ = \ \left(\Delta_{\zeta,0}^{2}
ight)^{2} \ \mathcal{N}_{s} \left(rac{\sigma}{H}
ight)^{2} e^{\mathcal{F}\left(k, N_{e}, \mathcal{N}_{s}(\sigma/H)^{2}
ight)}$$

$$\left\langle \delta \Delta_{\zeta}^{2}(k)
ight
angle \ = \ \left(\Delta_{\zeta,0}^{2}
ight)^{2} \ \mathcal{N}_{s} \left(rac{\sigma}{H}
ight)^{2} e^{\mathcal{F}\left(k, N_{e}, \mathcal{N}_{s}(\sigma/H)^{2}
ight)}$$

$$(N_e = 20, \mathcal{N}_s(\sigma/H)^2 = 25)$$

Marcos A. G. García. Bilbao webinar 20/05/2020

Observational implications

 $\Delta_{\zeta,0}^2 = \frac{1}{k_f} + \frac{1}{k_*}$

Observational implications

Observational implications

Printer

Conclusions

- Stochastically excited spectator fields undergo geometric random walks
- Lead to features in the curvature power spectrum ightarrow constraints
- Look for enhancement in the N-point function

$$\langle \zeta^n \rangle - \langle \zeta^n \rangle_{\chi=0} \sim \langle \zeta^2 \rangle_{\chi=0}^n \times \exp\left[\frac{n^2}{2}F\left(\mathcal{N}_s\frac{\sigma^2}{H^2}\right)\right]$$

- Higher spin spectators / higher spin observables
- Stochastic preheating
- Backreaction regime \rightarrow dissipation

Thank You