Curvature Perturbations From Stochastic Particle Production During Inflation

Marcos A. G. García

Rice University

1902.09598, MG, M. Amin, S. Carlsten, D. Green 19xx.xxxxx, MG, M. Amin, D. Green, D. Baumann

Complexity in the early universe

Inflation

- Near scale invariant: $\Delta_\zeta^2 \sim k^{n_s-1}$
- Near Gaussian
- Weak self-interaction (slow roll)

Particle theory

- SM UV completions $N_F \gg 1$
- Coupling to ϕ weakly constrained
- Non-trivial field manifolds

Complexity in the early universe

Inflation

- Near scale invariant: $\Delta_{\zeta}^2 \sim k^{n_s-1}$
- Near Gaussian
- Weak self-interaction (slow roll)

Particle theory

- SM UV completions $N_F \gg 1$
- Coupling to ϕ weakly constrained
- Non-trivial field manifolds

(trapped inflation)

$$m_{\rm eff}^2(t) = m_{\chi}^2 + g^2(\phi(t) - \phi_i) + \cdots$$

Spectator field in dS

Spectator field in an expanding universe

$$\begin{pmatrix} \frac{d^2}{dt^2} - \frac{\nabla^2}{a^2} + 3H\frac{d}{dt} + M^2 + m^2(t) \end{pmatrix} \chi(t, \mathbf{x}) = 0$$

$$a = a_0 e^{H(t-t_0)}$$

$$M^2 = 2H^2 \quad \text{(conformal)}$$

$$M^2 = 0 \quad \text{(massless)}$$

$$m^2(t) = \sum_j m_j \delta(t-t_j)$$

$$(\text{localized, non-adiabatic})$$

Spectator field in an expanding universe

$$\begin{pmatrix} \frac{d^2}{dt^2} - \frac{\nabla^2}{a^2} + 3H\frac{d}{dt} + M^2 + m^2(t) \end{pmatrix} \chi(t, \mathbf{x}) = 0$$

$$\begin{pmatrix} a = a_0 e^{H(t-t_0)} \\ (de \text{ Sitter}) \end{pmatrix} \qquad \begin{pmatrix} M^2 = 2H^2 \quad (\text{conformal}) \\ M^2 = 0 \quad (\text{massless}) \end{pmatrix} \qquad \begin{pmatrix} m^2(t) = \sum_j m_j \delta(t-t_j) \\ (\text{localized, non-adiabatic}) \end{pmatrix}$$

$$\begin{pmatrix} k \\ \overline{aH} = |k\tau| \leq 1 \\ (horizon) \end{pmatrix} \qquad \begin{pmatrix} X_k \equiv a \chi_k \\ = \alpha_{k,j} f_k(\tau) + \beta_{k,j} f_k^*(\tau) \\ f_k(\tau) = \frac{e^{-ik\tau}}{\sqrt{2k}} \times \begin{cases} 1 \\ (1 - \frac{i}{k\tau}) \end{cases} \qquad \begin{pmatrix} N_s \\ \overline{H(t_i - t_f)} \end{bmatrix} \equiv \mathcal{N}_s$$

Numerical and analytical solution

Results

 $\partial_{Ht} \langle \ln |X_k|^2 \rangle = \mu_1 \left(\mathcal{N}_s \left(\frac{\sigma}{H} \right)^2 \right)$

$$\partial_{Ht} \langle \ln |X_k|^2 \rangle = \mu_1 \left(\mathcal{N}_s \left(\frac{\sigma}{H} \right)^2 \right)$$

④ The two-point function of $~Z_k\equiv \ln |X_k|^2 - \langle \ln |X_k|^2
angle$ is also linear

$$\partial_{Ht} \langle \ln |X_k|^2 \rangle = \mu_1 \left(N_s \left(\frac{\sigma}{H} \right)^2 \right)$$

④ The two-point function of $~Z_k\equiv \ln |X_k|^2 - \langle \ln |X_k|^2
angle$ is also linear

 $\langle Z_k(t)Z_{k\prime}(t')
angle \ = \ \mu_2\left(\mathcal{N}_s(rac{\sigma}{H})^2
ight)H\min\left[t-t_k,t-t_{k\prime},t'-t_k,t'-t_{k\prime}
ight]$

 $|X_k|^2$ performs a geometric (Brownian) random walk ourside the horizon

$$\left\langle |X_{k_1}(t_1)|^2 \cdots |X_{k_n}(t_n)|^2 \right\rangle \ = \ \exp\left[\sum_{i=1}^n \langle \ln |X_{k_i}(t_i)|^2 \rangle + \frac{1}{2} \sum_{i,j=1}^n \langle Z_{k_i}(t_i) Z_{k_j}(t_j) \rangle \right]$$

The quasi-de Sitter Goldstone π couples to the spectator field χ ,

$${\cal S} \;=\; rac{1}{2}\int \sqrt{-g}\,d^4x \left[c(t+\pi)\partial_\mu\pi\partial^\mu\pi+\partial_\mu\chi\partial^\mu\chi-\left(M^2+m^2(t+\pi)
ight)\chi^2
ight]$$

The quasi-de Sitter Goldstone π couples to the spectator field χ ,

$${\cal S} \;=\; {1\over 2} \int \sqrt{-g}\, d^4x \left[c(t+\pi) \partial_\mu \pi \partial^\mu \pi + \partial_\mu \chi \partial^\mu \chi - \left(M^2 + m^2(t+\pi)
ight) \chi^2
ight]$$

To lowest order in π , with $\zeta \simeq H\pi$

$$\begin{split} \delta \Delta_{\zeta}^{2}(k) \; = \; 4\pi^{2} (\Delta_{\zeta}^{2})^{2} \frac{k^{3}}{H^{4}} \int d\tau' d\tau'' \; \tau' \tau'' G_{k}(\tau,\tau') G_{k}(\tau,\tau'') \frac{dm^{2}(\tau')}{d\tau'} \frac{dm^{2}(\tau'')}{d\tau''} \\ & \times \int \frac{d^{3} \mathbf{p}}{(2\pi)^{3}} \left[X_{p}(\tau') X_{p}^{*}(\tau'') \right]_{\mathrm{AS}} \left[X_{|\mathbf{p}-\mathbf{k}|}(\tau') X_{|\mathbf{p}-\mathbf{k}|}^{*}(\tau'') \right]_{\mathrm{AS}} \end{split}$$

The quasi-de Sitter Goldstone π couples to the spectator field χ ,

$${\cal S} \;=\; {1\over 2} \int \sqrt{-g}\, d^4x \left[c(t+\pi) \partial_\mu \pi \partial^\mu \pi + \partial_\mu \chi \partial^\mu \chi - \left(M^2 + m^2(t+\pi)
ight) \chi^2
ight]$$

To lowest order in π , with $\zeta \simeq H\pi$

$$\begin{split} \delta \Delta_{\zeta}^{2}(k) \; = \; 4\pi^{2} (\Delta_{\zeta}^{2})^{2} \frac{k^{3}}{H^{4}} \int d\tau' d\tau'' \; \tau' \tau'' G_{k}(\tau,\tau') G_{k}(\tau,\tau'') \frac{dm^{2}(\tau'')}{d\tau'} \frac{dm^{2}(\tau'')}{d\tau''} \\ & \times \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} \left[X_{p}(\tau') X_{p}^{*}(\tau'') \right]_{\mathrm{AS}} \left[X_{|\mathbf{p}-\mathbf{k}|}(\tau') X_{|\mathbf{p}-\mathbf{k}|}^{*}(\tau'') \right]_{\mathrm{AS}} \end{split}$$

$$\left\langle \delta \Delta_{\zeta}^2(k)
ight
angle \ = \ \left(\Delta_{\zeta,0}^2
ight)^2 \ \mathcal{N}_s \left(rac{\sigma}{H}
ight)^2 e^{\mathcal{F} \left(k, N_e, \mathcal{N}_s(\sigma/H)^2
ight)}$$

(conformal, $N_e = 20$)

- Stochastically excited spectator fields undergo geometric random walks
- Lead to features in the curvature power spectrum ightarrow constraints
- Look for enhancement in the N-point function

$$\langle \zeta^n
angle - \langle \zeta^n
angle_{\chi=0} \sim \langle \zeta^2
angle_{\chi=0}^n imes \exp\left[rac{n^2}{2}F\left(\mathcal{N}_srac{\sigma^2}{H^2}
ight)
ight]$$

- Higher spin spectators / higher spin observables
- Stochastic preheating
- Backreaction regime → dissipation

Thank You

Moment rates

Plenty of available parameter space

