Inflation and Dark Matter

Marcos A. G. García IFT-UAM 4/11/2019

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

$$H^2 \equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{1}{3}\left(\frac{\dot{\phi}^2}{2} + V(\phi)\right)$$

$$\mathcal{P}_{\mathcal{R}} = \frac{H^4}{4\pi^2\dot{\phi}^2}\left(\frac{k}{aH}\right)^{n_s - 1}$$

$$\mathcal{P}_{\mathcal{T}} = \frac{2}{\pi^2}H^2\left(\frac{k}{aH}\right)^{n_T}$$

$$\ddot{\phi} + (3H + \Gamma_{\phi})\dot{\phi} + V'(\phi) = 0$$

 $\ln a$

Primordial tilt (n_{s o.occ})

background dynamics \longleftrightarrow particle production \longleftrightarrow curvature fluctuations $\langle \chi_{k_1} \chi_{k_2} \cdots \rangle$ $\langle \zeta_{k_1} \zeta_{k_2} \cdots \rangle$

$$\left[\ddot{\pi}_{k} + [3H + \mathcal{O}_{d}] \pi_{k} + \frac{k^{2}}{a^{2}} \pi_{k} = \mathcal{O}_{s} (\langle \chi \chi \cdots \rangle_{k})\right]$$

 $\uparrow\uparrow\uparrow$

φ

$$ullet$$
 Trapped inflation $\mathcal{L} \supset \sum_i g^2 (\phi - \phi_{0i})^2 \chi_i^2$

• Warm inflation
$$\delta \ddot{\phi}_k = \sqrt{2\Gamma T} a^{-3/2} \xi_k + \cdots$$

$$ullet$$
 Stochastic inflation $rac{d\phi}{dN} = -rac{V'}{3H^2} + rac{H}{2\pi} \xi_N$

• . . .

background dynamics \longleftrightarrow particle production \longleftrightarrow curvature fluctuations $\langle \chi_{k_1} \chi_{k_2} \cdots \rangle$ $\langle \zeta_{k_1} \zeta_{k_2} \cdots \rangle$ $\ddot{\pi}_{k} + [3H + \mathcal{O}_{d}] \pi_{k} + \frac{k^{2}}{a^{2}} \pi_{k} = \mathcal{O}_{s} (\langle \chi \chi \cdots \rangle_{k})$

- Dark Matter bestiary
 - What did I miss?

- Dark Matter bestiary
 - What did I miss?

- Dark Matter bestiary
 - What did I miss?
- Observational challenges
 - Direct and indirect detection in particle and non-particle DM models

(Giorgio's)

(Michel's)

- Dark Matter bestiary
 - What did I miss?
- Observational challenges
 - Direct detection in particle and non-particle DM models
 - In FIMP scenarios, how to break the degeneracy? $(\Omega_{\rm DM})$

- Dark Matter bestiary
 - What did I miss?
- Observational challenges
 - Direct detection in particle and non-particle DM models
 - In FIMP scenarios, how to break the degeneracy? (Ω_{DM})
- Computational challenges
 - Toy models vs. UV completions
 - Parametrize the CMB DM connection

- Dark Matter bestiary
 - What did I miss?
- Observational challenges
 - Direct detection in particle and non-particle DM models
 - In FIMP scenarios, how to break the degeneracy? $(\Omega_{\rm DM})$
- Computational challenges
 - Toy models vs. UV completions
 - Parametrize the CMB DM connection
- Insights from people from first part of symposium
 - Modified gravity?