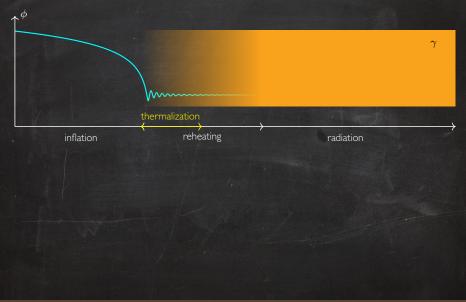
Pre-thermalization Production of Dark Matter

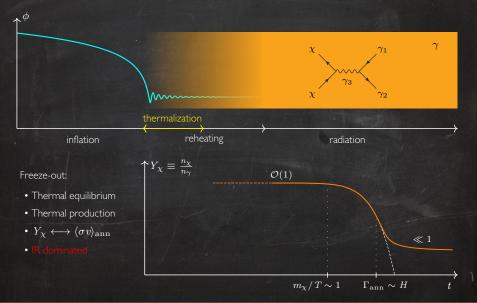
Marcos A. G. García

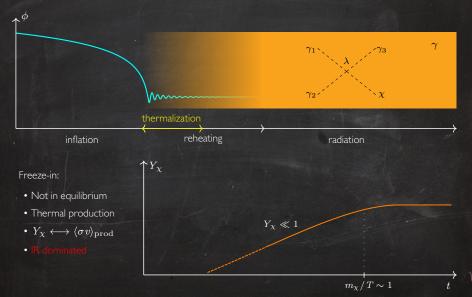
Rice University

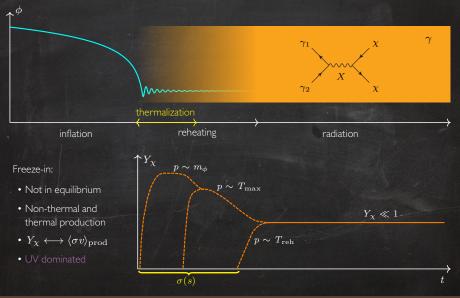
1709.01549, MG, Y. Mambrini, K. Olive, M. Peloso 1806.01865, MG, M. Amin (today)

24th International Symposium on PArticles, Strings & COSmology





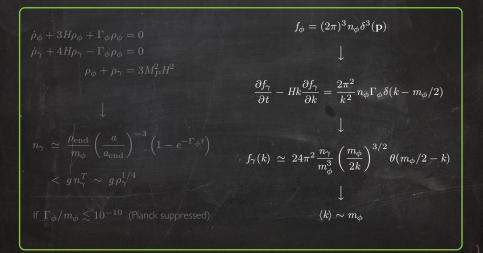




Pre-thermalization

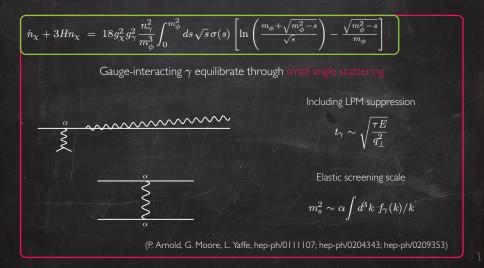
 $\dot{\rho}_{\phi} + 3H\rho_{\phi} + \Gamma_{\phi}\rho_{\phi} = 0$ $\dot{\rho}_{\gamma} + 4H\rho_{\gamma} - \Gamma_{\phi}\rho_{\phi} = 0$ $\rho_{\phi} + \rho_{\gamma} = 3M_P^2 H^2$ $|n_{\gamma}| \simeq \left|rac{
ho_{
m end}}{m_{\phi}}\left(rac{a}{a_{
m end}}
ight)^{-3}\left(1-e^{-\Gamma_{\phi}t}
ight)
ight.$ $< g n_{\gamma}^T \sim g \rho_{\gamma}^{3/4}$ If $\Gamma_{\phi}/m_{\phi} \lesssim 10^{-10}$ (Planck suppressed)

Pre-thermalization

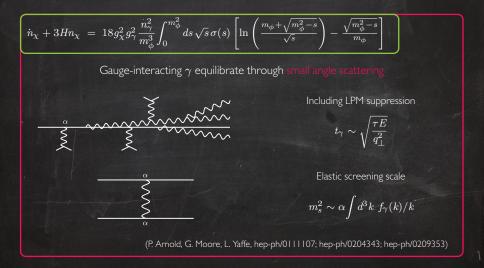


Pre-thermalization

Thermalization



Thermalization



Thermalization

$$\int n_{\chi} + 3Hn_{\chi} = 18g_{\chi}^2 g_{\gamma}^2 \frac{n_{\gamma}^2}{m_{\phi}^3} \int_0^{m_{\phi}^2} ds \sqrt{s} \,\sigma(s) \left[\ln\left(\frac{m_{\phi} + \sqrt{m_{\phi}^2 - s}}{\sqrt{s}}\right) - \frac{\sqrt{m_{\phi}^2 - s}}{m_{\phi}} \right]$$

Gauge-interacting γ equilibrate through small angle scattering

$$\Gamma_{\phi} t_{\rm th} \simeq \alpha^{-16/5} \left(\frac{\Gamma_{\phi} m_{\phi}^2}{M_P^3} \right)^{2/5} \sim 10^{-6,-7}$$

$$T_{
m max} \simeq lpha^{4/5} m_{\phi} \left(rac{24}{\pi^2 g_{
m reh}}
ight)^{1/4} \left(rac{\Gamma_{\phi} M_P^2}{m_{\phi}^3}
ight)^{2/2}$$

(K. Harigaya, K. Mukaida, 1312.3097; K. Mukaida, M. Yamada, 1312.3097)

Post-thermalization

$$\begin{split} \dot{n}_{\chi} + 3Hn_{\chi} &= 18g_{\chi}^{2}g_{\gamma}^{2} \frac{n_{\gamma}^{2}}{m_{\phi}^{3}} \int_{0}^{m_{\phi}^{2}} ds \sqrt{s} \sigma(s) \left[\ln \left(\frac{m_{\phi} + \sqrt{m_{\phi}^{2} - s}}{\sqrt{s}} \right) - \frac{\sqrt{m_{\phi}^{2} - s}}{m_{\phi}} \right] \\ \Gamma_{\phi} t_{\text{th}} &\simeq \alpha^{-16/5} \left(\frac{\Gamma_{\phi} m_{\phi}^{2}}{M_{P}^{3}} \right)^{2/5} \ll 1 \\ \dot{n}_{\chi} + 3Hn_{\chi} &= \frac{g_{\chi}^{2} g_{\gamma}^{2}}{8\pi^{4}} \int dk_{1} dk_{2} d\cos \theta_{12} \frac{(k_{1}k_{2})^{2}(1 - \cos \theta_{12})}{(e^{k_{1}/T} \pm 1)(e^{k_{2}/T} \pm 1)} \sigma(s) \\ &\downarrow \text{M.B.} \\ &\simeq \frac{g_{\chi}^{2} g_{\gamma}^{2} T}{2(2\pi)^{4}} \int_{0}^{\infty} ds \, s^{3/2} \sigma(s) K_{1}(\sqrt{s}/T) \\ \end{split}$$
(P. Gondolo, G. Gelmini, Nucl. Phys. B360 (1991) 145)

$$\left[\dot{n}_{\chi} + 3Hn_{\chi} = 18g_{\chi}^{2}g_{\gamma}^{2} \frac{\dot{n}_{\gamma}^{2}}{m_{\phi}^{3}} \int_{0}^{m_{\phi}^{2}} ds \sqrt{s} \, \sigma(s) \left[\ln\left(\frac{m_{\phi} + \sqrt{m_{\phi}^{2} - s}}{\sqrt{s}}\right) - \frac{\sqrt{m_{\phi}^{2} - s}}{m_{\phi}} \right] \right]$$

$$\Gamma_{\phi} t_{\rm th} \simeq \alpha^{-16/5} \left(\frac{\Gamma_{\phi} m_{\phi}^2}{M_P^3} \right)^{2/5} \ll 1$$

$$\dot{n}_{\chi} + 3Hn_{\chi} = \frac{g_{\chi}^{2}g_{\gamma}^{2}T}{2(2\pi)^{4}} \int_{0}^{\infty} ds \, s^{3/2} \sigma(s) K_{1}(\sqrt{s}/T)$$

$$\left[\dot{n}_{\chi} + 3Hn_{\chi} = 18g_{\chi}^2 g_{\gamma}^2 \frac{\dot{n}_{\gamma}^2}{m_{\phi}^3} \int_0^{m_{\phi}^2} ds \sqrt{s} \,\sigma(s) \left[\ln\left(\frac{m_{\phi} + \sqrt{m_{\phi}^2 - s}}{\sqrt{s}}\right) - \frac{\sqrt{m_{\phi}^2 - s}}{m_{\phi}} \right] \right]$$

$$\Gamma_{\phi} t_{
m th} \, \simeq \, lpha^{-16/5} \left(rac{\Gamma_{\phi} m_{\phi}^2}{M_P^3}
ight)^{2/5} \, \ll \, 1$$

$$\dot{n}_{\chi} + 3Hn_{\chi} = rac{g_{\chi}^2 g_{\gamma}^2 T}{2(2\pi)^4} \int_0^\infty ds \, s^{3/2} \sigma(s) K_1(\sqrt{s}/T)$$

$$\sigma(s) \propto rac{s^{n/2}}{M^{n+2}}$$

$$\hat{n}_{\chi} + 3Hn_{\chi} = 18g_{\chi}^2 g_{\gamma}^2 \frac{\dot{n}_{\gamma}^2}{m_{\phi}^3} \int_0^{m_{\phi}^2} ds \sqrt{s} \sigma(s) \left[\ln\left(\frac{m_{\phi} + \sqrt{m_{\phi}^2 - s}}{\sqrt{s}}\right) - \frac{\sqrt{m_{\phi}^2 - s}}{m_{\phi}} \right]$$

$$\Gamma_{\phi} t_{
m th} \, \simeq \, lpha^{-16/5} \left(rac{\Gamma_{\phi} m_{\phi}^2}{M_P^3}
ight)^{2/5} \, \ll \, 1$$

$$\dot{n}_{\chi} + 3Hn_{\chi} \; = \; rac{g_{\chi}^2 g_{\gamma}^2 T}{2(2\pi)^4} \int_0^\infty ds \, s^{3/2} \sigma(s) K_1(\sqrt{s}/T) \; .$$

Thermal:

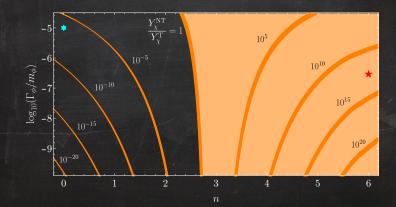
$$Y_{\chi}^{\rm T}(T_{\rm reh}) \propto \frac{M_P T_{\rm reh}^7}{g_{\rm reh}^{1/2} M^{n+2}} \times \begin{cases} \frac{1}{n-6} (T_{\rm max}^{n-6} - T_{\rm reh}^{n-6}), & n > -1, \ n \neq 6\\ \ln\left(\frac{T_{\rm max}}{T_{\rm reh}}\right), & n = 6 \end{cases}$$

 $\sigma(s) \propto rac{s^{n/2}}{M^{n+2}}$

$$\begin{split} \hat{n}_{\chi} + 3Hn_{\chi} &= 18g_{\chi}^{2}g_{\gamma}^{2}\frac{n_{\gamma}^{2}}{m_{\phi}^{3}}\int_{0}^{m_{\phi}^{2}}ds\sqrt{s}\,\sigma(s)\left[\ln\left(\frac{m_{\phi}+\sqrt{m_{\phi}^{2}-s}}{\sqrt{s}}\right) - \frac{\sqrt{m_{\phi}^{2}-s}}{m_{\phi}}\right] \\ \Gamma_{\phi}t_{\rm th} &\simeq \alpha^{-16/5}\left(\frac{\Gamma_{\phi}m_{\phi}^{2}}{M_{P}^{2}}\right)^{2/5} \ll 1 \\ \hat{n}_{\chi} + 3Hn_{\chi} &= \frac{g_{\chi}^{2}g_{\gamma}^{2}T}{2(2\pi)^{4}}\int_{0}^{\infty}ds\,s^{3/2}\sigma(s)K_{1}(\sqrt{s}/T) \\ \sigma(s) \propto \frac{s^{n/2}}{M^{n+2}} \end{split}$$
 Non-thermality

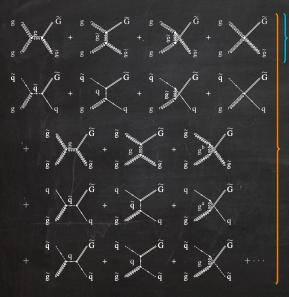
Non-thermal:

$$Y_{\chi}^{
m NT}(\,T_{
m reh}) \,\propto\, g_{
m reh}^{3/2} \, rac{T_{
m reh}^3 M_P m_{\phi}^{n-2}}{M^{n+2}} \, (\Gamma_{\phi} t_{
m th})$$



Light Gravitino

 $\phi
ightarrow g + g\,$ and weak scale supersymmetry

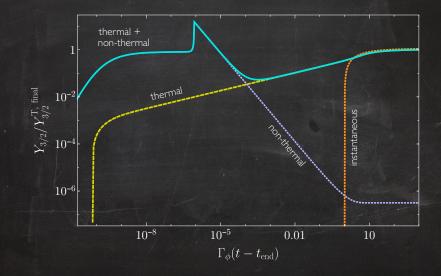


 $\sum_{i=1}^{3} \frac{3\pi^2 c_i \alpha_i}{4\zeta(3)M_p^2} \left(1 + \frac{m_{\tilde{g}_i}^2}{3m_{2/2}^2}\right) \ln\left(\frac{k_i}{g_i}\right)$

(M. Bolz et. al., hep-ph/0012052) (V. Rychkov, A. Strumia, hep-ph/0701104)

Light Gravitino

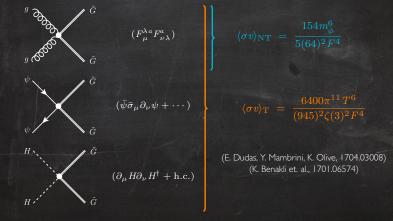
 $\phi
ightarrow g + g\,$ and weak scale supersymmetry



Heavy Gravitino

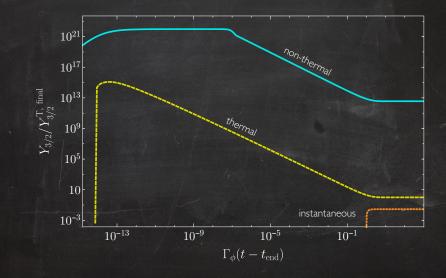
High scale supersymmetry. Only susy state below the inflationary scale is the gravitino Leading-order universal Goldstino-matter interactions $(F = \sqrt{3}m_{3/2}M_P)$:

$$\mathcal{L}_{2G} = \frac{i}{2F^2} \left(G \sigma^{\mu} \partial^{\nu} \bar{G} - \partial^{\nu} G \sigma^{\mu} \bar{G} \right) T_{\mu\nu}$$



Heavy Gravitino

High scale supersymmetry. Only susy state below the inflationary scale is the gravitino



Heavy Gravitino

High scale supersymmetry. Only susy state below the inflationary scale is the gravitino

Assuming instantaneous reheating and thermalization...

$$\Omega_{3/2}^{
m inst} h^2 \simeq 0.11 \left(rac{0.1\,{
m EeV}}{m_{3/2}}
ight)^3 \left(rac{T_{
m reh}}{2.2 imes10^{10}}
ight)^7$$

vs. accounting for their finite duration...

$$\Omega_{3/2}h^2 \simeq 0.11 \left(\frac{0.1\,\text{EeV}}{m_{3/2}}\right)^3 \left(\frac{T_{\text{reh}}}{2.2 \times 10^8}\right)^{19/5} \left(\frac{m_{\phi}}{3 \times 10^{13}\,\text{GeV}}\right)^{24/5} \left(\frac{0.030}{\alpha_3}\right)^{16/5}$$

(similar analysis applies to DM production through heavy spin-2 mediators, N. Bernal et. al. 1803.01866)

Freezing-in dark matter through a heavy invisible Z'

Gautam Bhattacharyya^a,^{*} Maíra Dutra^b,[†] Yann Mambrini^b,[‡] Mathias Pierre^{b§} ^a Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India ^b Laboratoire de Physique Théorique (UMR8627), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

(1806.00016 [hep-ph])

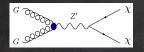


FIG. 1: Production of dark matter through gluon fusion in the early Universe

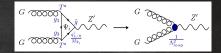


FIG. 4: Triangle diagram generated containing heavy chiral fermions Ψ_i (left panel), and the resulting effective vertex at low energy (right panel).

$$\langle \sigma v \rangle n_{\gamma}^{2} = R(T) \approx \begin{cases} 2 \times 10^{2} \frac{\alpha^{2}}{\Lambda^{4}} \frac{m_{\chi}^{2}}{M_{Z'}^{4}} T^{10} & \text{(fermionic DM)} & \rightarrow n = 4 \\ 10^{4} \frac{\beta^{2}}{\Lambda^{4} M_{Z'}^{4}} T^{12} & \text{(abelian DM)} & \rightarrow n = 6 \\ 2 \times 10^{9} \frac{\gamma^{2}}{\Lambda^{4} M_{Z'}^{4}} T^{16} & \text{(non-abelian DM)} & \rightarrow n = 10 \end{cases}$$

$$(14)$$

Conclusion

- ullet UV-dominated freeze-in during reheating is realized for $\sigma(s)\sim s^{n/2}$, n>2
- Thermalization time-scale determines the DM abundance at late times
- Effect important for DM production in very high scale susy models, or for heavy spin-2 mediators. Other models?
- Preheating? N_{eff}?

Conclusion

- UV-dominated freeze-in during reheating is realized for $\sigma(s) \sim s^{n/2}$, n>2
- Thermalization time-scale determines the DM abundance at late times
- Effect important for DM production in very high scale susy models, or for heavy spin-2 mediators. Other models?
- Preheating? $N_{\rm eff}$?

Thank you