
The H3 integrable model
The h(3) algebra

The discrete H3 system
Quasi-exactly-solvable generalization

Conclusion

The H3 integrable system

Marcos A. G. Garćıa
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Rational integrable systems

The Hamiltonian Reduction method provides an opportunity
to construct non-trivial multidimensional completely
integrable quantum Hamiltonians.

These Hamiltonians are associated to the root spaces of the
classical (An, Bn, Cn, Dn) and exceptional (G2, F4, E6,7,8) Lie
algebras

In the case of rational potentials one can also construct
Hamiltonians associated with the noncrystallographic systems
H3, H4 and I2(m) (Olshanestky-Perelomov, ’75)
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Algebraic expressions of quantum Hamiltonians for all
crystallographic root systems have been found for both
rational and trigonometric cases (A. Turbiner et al., 1997 -
2009)

The eigenfunctions can be obtained explicitly as polynomials

The spectrum can be found in a closed form as a polynomial
in the quantum numbers
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The Hamiltonian in the rational case is

H∆ =
1

2

N∑
k=1

[
− ∂2

∂x2
k

+ ω2x2
k

]
+

1

2

∑
α∈R+

g|α||α|2
1

(α · x)2

R+ = set of positive roots in the system ∆, rank(∆) = N

ω ∈ R a parameter

g|α| coupling constants depending on the root length

x = (x1, x2, . . . , xN)

Configuration space is the subspace of RN where

(α · x) > 0

for any α ∈ R+
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The goal is

To find a transformation x → τ leading to algebraic form of
the Hamiltonian (if exists)

h∆ =
N∑

i ,j=1

Aij(τ)
∂2

∂τi∂τj
+

N∑
j=1

Bj(τ)
∂

∂τj
,

where Aij(τ), Bj(τ) are polynomials

Marcos A. G. Garćıa The H3 integrable system



The H3 integrable model
The h(3) algebra

The discrete H3 system
Quasi-exactly-solvable generalization

Conclusion

Rational integrable systems
The H3 rational model
Algebraic form
Invariant polynomial spaces
Integral

Find finite-dimensional invariant spaces for h∆ of a form

P α
n = 〈τp1

1 τp2
2 . . . τpr

r |0 ≤ α1p1 + α2p2 + · · ·+ αrpr ≤ n〉 ,

(if exist) for

n = 0, 1, 2, . . . α1, α2, . . . , αr ∈ Z+

They are classified by characteristic vector

α = (α1, α2, . . . , αr )

These spaces can be ordered by inclusion:

P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pn ⊂ · · ·

Such an object is called an infinite flag
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The H3 rational model

The H3 rational Hamiltonian is

H =
1

2

3∑
k=1

[
− ∂2

∂x2
k

+ ω2x2
k +

g

x2
k

]
+
∑
{i ,j ,k}

∑
µ1,2=0,1

2g

[xi + (−1)µ1ϕ+xj + (−1)µ2ϕ−xk ]2

where {i , j , k} = {1, 2, 3} and all even permutations. The coupling
constant is

g = ν(ν − 1) > −1

4

and

ϕ± =
1±
√

5

2
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Explicitly:

H = −1

2
∆(3) +

1

2
ω2(x2

1 + x2
2 + x2

3 ) +
1

2
ν(ν − 1)

[
1

x2
1

+
1

x2
2

+
1

x2
3

]
+ 2ν(ν − 1)

[
1

(x1 + ϕ+x2 + ϕ−x3)2
+

1

(x1 − ϕ+x2 + ϕ−x3)2

+
1

(x1 + ϕ+x2 − ϕ−x3)2
+

1

(x1 − ϕ+x2 − ϕ−x3)2
+

1

(x2 + ϕ+x3 + ϕ−x1)2

+
1

(x2 − ϕ+x3 + ϕ−x1)2
+

1

(x2 + ϕ+x3 − ϕ−x1)2
+

1

(x2 − ϕ+x3 − ϕ−x1)2

+
1

(x3 + ϕ+x1 + ϕ−x2)2
+

1

(x3 − ϕ+x1 + ϕ−x2)2
+

1

(x3 + ϕ+x1 − ϕ−x2)2

+
1

(x3 − ϕ+x1 − ϕ−x2)2

]
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The Hamiltonian is invariant wrt the H3 Coxeter group, which is
the full symmetry group of the icosahedron.

The Hamiltonian is symmetric with respect to the transformation

xi ←→ xj

ϕ+ ←→ ϕ−
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The ground state function and its eigenvalue are

Ψ0 = ∆ν
1∆

ν
2 exp

(
−ω

2

3∑
k=1

x2
k

)
, E0 =

3

2
ω(1 + 10ν)

where

∆1 =
3∏

k=1

xk

∆2 =
∏
{i ,j ,k}

∏
µ1,2=0,1

[xi + (−1)µ1ϕ+xj + (−1)µ2ϕ−xk ]
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Explicitly:

Ψ0 = [x1 x2 x3]
ν ×

[(x1 + ϕ+x2 + ϕ−x3) (x1 − ϕ+x2 + ϕ−x3) (x1 + ϕ+x2 − ϕ−x3)

(x1 − ϕ+x2 − ϕ−x3) (x2 + ϕ+x3 + ϕ−x1) (x2 − ϕ+x3 + ϕ−x1)

(x2 + ϕ+x3 − ϕ−x1) (x2 − ϕ+x3 − ϕ−x1) (x3 + ϕ+x1 + ϕ−x2)

(x3 − ϕ+x1 + ϕ−x2) (x3 + ϕ+x1 − ϕ−x2) (x3 − ϕ+x1 − ϕ−x2) ]ν

× exp
[
−ω

2
(x2

1 + x2
2 + x2

3 )
]
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Configuration space

The configuration space is the
domain in R3 where x1,2,3 > 0
bounded by the planes

x1 = 0 , x3 = 0 ,

x3 + ϕ+x1 + ϕ−x2 = 0 .

(the domain where (α ·x) > 0).
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The algebraic form of the Hamiltonian

Make a gauge rotation of the Hamiltonian:

h = −2(Ψ0)
−1(H− E0)(Ψ0)

New spectral problem arises

hφ(x) = −2εφ(x)

with spectral parameter ε = E − E0

Can we find variables leading to an algebraic form of h?
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What might those variables be?
The invariants of the H3 group

Consider the fundamental weights of ∆H3 and their orbits Ω:

weight vector orbit size

ω1 = (0, ϕ+, 1) 12

ω2 = (1, ϕ2
+, 0) 20

ω3 = (0, 2ϕ+, 0) 30

Choose the shortest orbit and average

ta(x) =
∑
ω∈Ω1

(ω · x)a

a = 2, 6, 10 are the degrees of the H3 group
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The invariants are defined ambiguously

t2 −→ t2

t6 −→ t6 + α1t
3
2

t10 −→ t10 + α2t
2
2 t6 + α3t

5
2

We look for parameters αi such that
I the Hamiltonian h has algebraic form
I has infinitely-many invariant subspaces in polynomials
I these subspaces form a flag
I the flag is “minimal”
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Those variables are

τ1 =
1

10 + 2
√

5
t2

τ2 =
1

10 + 16
√

5

(
t6 −

13

10
t3
2

)
τ3 =

1

250 + 110
√

5

(
t10 −

76

15
t2
2 t6 +

1531

375
t5
2

)
Explicit expressions

The Hamiltonian takes the algebraic form

h =
3∑

i ,j=1

Aij
∂2

∂τi∂τj
+

3∑
j=1

Bj
∂

∂τj
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with

A11 = 4τ1

A12 = 12τ2

A13 = 20τ3

A22 = −48

5
τ2
1 τ2 +

45

2
τ3

A23 =
16

15
τ1τ

2
2 − 24τ2

1 τ3

A33 = −64

3
τ1τ2τ3 +

128

45
τ3
2

B1 = 6 + 60ν − 4ωτ1

B2 = −48

5
(1 + 5ν)τ2

1 − 12ωτ2

B3 = −64

15
(2 + 5ν)τ1τ2 − 20ωτ3
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Configuration space and Jacobian

In τ ’s the configuration space boundary is an algebraic surface of
degree 7 (degree 30 in x)

κ(τ) =− 12960τ5
1 τ2

3 + 5760τ4
1 τ2

2 τ3 − 640τ3
1 τ4

2 − 54000τ2
1 τ2τ

2
3

+ 21600τ1τ
3
2 τ3 − 2304τ5

2 − 50625τ3
3 = 0

Boundary corresponds to zeros of Ψ0
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The square of the Jacobian of the change of variables x → τ can
be calculated explicitly:

J2 =

∣∣∣∣∣∣∣∣∣∣∣∣

∂τ1

∂x1

∂τ1

∂x2

∂τ1

∂x3

∂τ2

∂x1

∂τ2

∂x2

∂τ2

∂x3

∂τ3

∂x1

∂τ3

∂x2

∂τ3

∂x3

∣∣∣∣∣∣∣∣∣∣∣∣

2

=
9

5

∏
α∈R+

3

(α · x)2 =
8

45
κ(τ) .

It vanishes on the boundary of the configuration space.
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Polynomial spaces

The algebraic operator h preserves subspaces

P(1,2,3)
n = 〈τn1

1 τn2
2 τn3

3 |0 ≤ n1 + 2n2 + 3n3 ≤ n〉 , n ∈ N

⇒ characteristic vector is (1,2,3), they form flag

The flag is invariant with respect to weighted-projective
transformations:

τ1 −→τ1 + a

τ2 −→τ2 + b1τ
2
1 + b2τ1 + b3

τ3 −→τ3 + c1τ1τ2 + c2τ
3
1 + c3τ2 + c4τ

2
1 + c5τ1 + c6
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Eigenfunctions and spectrum

One can find the spectrum of h explicitly:

εk1,k2,k3 = 2ω(k1 + 3k2 + 5k3) , ki = 0, 1, 2, . . .

Degeneracy: k1 + 3k2 + 5k3 = integer

The energies of the original Hamiltonian are

E = E0 + ε

Eigenfunctions φn,i of h are elements of P(1,2,3)
n .

Eigenfunctions of H are

Ψ = Ψ0 φ (factorization)
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n = 0:
φ0,0 = 1 , ε0,0 = 0 .

n = 1:

φ1,0 = τ1 +
3

2ω
(1 + 10ν) , ε1,0 = 2ω .

n = 2:

φ2,0 = τ2
1 −

5

ω
(1 + 6ν)τ1 +

15

4ω2
(1 + 6ν)(1 + 10ν) ,

ε2,0 = 4ω ,

φ2,1 = τ2 +
12

5ω
(1 + 5ν)τ2

1 −
6

ω2
(1 + 5ν)(1 + 6ν)τ1

+
3

ω3
(1 + 5ν)(1 + 6ν)(1 + 10ν) ,

ε2,1 = 6ω .
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Separation in spherical coordinates

In spherical coordinates the H3 Hamiltonian is

H = −1

2
∆(3) +

1

2
ω2r2 +

W (θ, φ)

r2

The Schroedinger equation is separable:

Ψ(r , θ, φ) = R(r)Q(θ, φ)

with [
− 1

2r2

∂

∂r

(
r2 ∂

∂r

)
+

1

2
ω2r2 +

γ

r2

]
R(r) = ER(r)

[
1

2
L2 + W (θ, φ)

]
Q(θ, φ) = γ Q(θ, φ)
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The operator

F =
1

2
L2 + W (θ, φ) Explicit expression

is an integral of motion

[H,F ] = 0

The gauge rotated operator

f = (Ψ0)
−1(F − γ0)Ψ0 , γ0 =

15

2
ν(1 + 15ν)

has an algebraic form in τ ’s:

f =
3∑

i ,j=2

Fij
∂2

∂τi∂τj
+

3∑
j=2

Gj
∂

∂τj
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Rational integrable systems
The H3 rational model
Algebraic form
Invariant polynomial spaces
Integral

with

F22 =
24

5
τ3
1 τ2 −

45

4
τ1τ3 + 18τ2

2 ,

F23 =− 8

15
τ2
1 τ2

2 + 12τ3
1 τ3 + 30τ2τ3 ,

F33 =− 64

45
τ1τ

3
2 +

32

3
τ2
1 τ2τ3 + 50τ2

3 ,

G2 =
24

5
(1 + 5ν)τ3

1 + 3(7 + 30ν)τ2 ,

G3 =
32

15
(2 + 5ν)τ2

1 τ2 + 5(11 + 30ν)τ3 .
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Rational integrable systems
The H3 rational model
Algebraic form
Invariant polynomial spaces
Integral

The integral f preserves the flag of polynomials

P(1,3,5)
n = 〈τn1

1 τn2
2 τn3

3 |0 ≤ n1 + 3n2 + 5n3 ≤ n〉

hence characteristic vector is (1,3,5).The operator h also preserves
this flag.

Joint eigenfunctions belong to this flag !

Existence of the flag (1,2,3) may be related to degeneracy of H
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Flag preserving operators
Raising operators
Commutation relations
The Hamiltonian in algebraic form

The h(3) algebra.

Can P(1,2,3)
n be finite-dimensional representation spaces of a Lie

algebra of differential operators? Yes

We call this algebra h(3). It is infinite-dimensional but finitely
generated (30 operators).

Generating elements can be split in two classes:

First class: lowering and Cartan operators, they act on Pn at
any n, infinite flag is preserved

Second class: raising operators, a single space at a certain n is
preserved
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Flag preserving operators
Raising operators
Commutation relations
The Hamiltonian in algebraic form

First order operators

The first class generators consist of 13 first order operators

T
(1)
0 = ∂1 , T

(2)
0 = ∂2 , T

(3)
0 = ∂3 ,

T
(1)
1 = τ1∂1 , T

(2)
2 = τ2∂2 , T

(3)
3 = τ3∂3 ,

T
(3)
1 = τ1∂3 , T

(3)
11 = τ2

1 ∂3 , T
(3)
111 = τ3

1 ∂3 ,

T
(2)
1 = τ1∂2 , T

(2)
11 = τ2

1 ∂2 , T
(3)
2 = τ2∂3 ,

T
(3)
12 = τ1τ2∂3
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Raising operators
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Second and third order operators

plus 6 second order generators

T
(11)
2 = τ2∂11 , T

(13)
22 = τ2

2 ∂13 , T
(33)
222 = τ3

2 ∂33 ,

T
(12)
3 = τ3∂12 , T

(22)
3 = τ3∂22 , T

(22)
13 = τ1τ3∂22

and 2 third order generators

T
(111)
3 = τ3∂111 , T

(222)
33 = τ2

3 ∂222

These 21 operators are generating elements of the flag-preserving
subalgebra of h(3)
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Flag preserving operators
Raising operators
Commutation relations
The Hamiltonian in algebraic form

Second class (raising operators)

Define the auxiliary operator (which belongs to the first class)

J0 = τ1∂1 + 2τ2∂2 + 3τ3∂3 − n

Raising generators consist of 8 operators of 1st, 2nd and 3rd order

J+
1 = τ1J0 , J+

2,−1 = τ2∂1J0 , J+
3,−2 = τ3∂2J0 ,

J+
2 = τ2J0(J0 + 1) , J+

3,−11 = τ3∂11J0 , J+
22,−3 = τ2

2 ∂3J0 ,

J+
3 = τ3J0(J0 + 1)(J0 + 2) , J+

3,−1 = τ3∂1J0(J0 + 1)

h(3) is the infinite dimensional algebra of monomials in the 30 (22+8)
generating elements
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Flag preserving operators
Raising operators
Commutation relations
The Hamiltonian in algebraic form

Subalgebras of h(3)

Generating elements of h(3) can be grouped in 10 Abelian
subalgebras

L = {T (3)
0 ,T

(3)
1 ,T

(3)
11 ,T

(3)
111} ←→ L = {T (111)

3 , J+
3,−11, J

+
3,−1, J

+
3 }

R = {T (2)
0 ,T

(2)
1 ,T

(2)
11 } ←→ R = {T (11)

2 , J+
2,−1, J

+
2 }

F = {T (3)
2 ,T

(3)
12 } ←→ F = {T (12)

3 , J+
3,−2}

E = {T (22)
13 ,T

(22)
3 } ←→ E = {T (13)

22 , J+
22,−3}

G = {T (33)
222 } ←→ G = {T (222)

33 }

and a closed subalgebra

B = {T (1)
0 ,T

(1)
1 ,T

(2)
2 ,T

(3)
3 , J0, J

+
1 }
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Flag preserving operators
Raising operators
Commutation relations
The Hamiltonian in algebraic form

Commutation relations between commutative algebras:

[L,R] = 0, [L,R] = 0,

[L,F ] = 0, [L,F] = 0,

[L,E ] = P2(R), [L,E] = P2(R),

[L,G ] = 0, [L,G] = 0,

[R,F ] = L, [R,F] = L,

[R,E ] = 0, [R,E] = 0,

[R,G ] = P2(F ), [R,G] = P2(F),

[F ,E ] = P2(R ⊕ B), [F,E] = P2(R⊕ B),

[F ,G ] = 0, [F,G] = 0,

[E ,G ] = P3(F ⊕ B), [E,G] = P3(F⊕ B),
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Raising operators
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[L,R] = P2(F ⊕ B), [L,R] = P2(F⊕ B),

[L,F] = P2(R ⊕ B), [L,F ] = P2(R⊕ B),

[L,E] = P2(F ), [L,E ] = P2(F),

[L,G] = P2(R ⊕ E ), [L,G ] = P2(R⊕ E),

[R,F] = E , [R,F ] = E,

[R,E] = P2(F ⊕ B), [R,E ] = P2(F⊕ B),

[R,G] = 0, [R,G ] = 0,

[F ,E] = G , [F,E ] = G,

[F ,G] = P2(E ⊕ B), [F,G ] = P2(E⊕ B),

[E ,G] = 0, [E,G ] = 0,
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Flag preserving operators
Raising operators
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The Hamiltonian in algebraic form

[L,L] = P3(B), [R,R] = P2(B), [F ,F] = P2(B),

[E ,E] = P3(B), [G ,G] = P4(B)

Commutation relations between Abelian subalgebras and B:

[L,B] = L , [R,B] = R , [F ,B] = F , [E ,B] = E , [G ,B] = G ,

[L,B] = L , [R,B] = R , [F,B] = F , [E,B] = E , [G,B] = G

� -

6

LL
P3(B)

B

nn
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Flag preserving operators
Raising operators
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Commutation relations between generators of B:

[T
(1)
0 ,T

(1)
1 ] = T

(1)
0 , [T

(1)
0 ,T

(2)
2 ] = 0 , [T

(1)
0 ,T

(3)
3 ] = 0 ,

[T
(1)
0 , J0] = T

(1)
0 , [T

(1)
0 , J+

1 ] = T
(1)
1 + J0 , [T

(1)
1 ,T

(2)
2 ] = 0 ,

[T
(1)
1 ,T

(3)
3 ] = 0 , [T

(1)
1 , J0] = 0 , [T

(1)
1 , J+

1 ] = J+
1 ,

[T
(2)
2 ,T

(3)
3 ] = 0 , [T

(2)
2 , J0] = 0 , [T

(2)
2 , J+

1 ] = 0 ,

[T
(3)
3 , J0] = 0 , [T

(3)
3 , J+

1 ] = 0 , [J0, J
+
1 ] = J+

1

Correspond to
B ∼= g`2 ⊕R(2)
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Flag preserving operators
Raising operators
Commutation relations
The Hamiltonian in algebraic form

The h Hamiltonian (Lie algebraic form)

Lie algebraic form for h:

h = 4T
(1)
1 T

(1)
0 + 24T

(2)
2 T

(1)
0 + 40T

(3)
3 T

(1)
0 − 48

5
T

(2)
2 T

(2)
11

+
45

2
T

(22)
3 +

32

15
T

(3)
12 T

(2)
2 − 48T

(3)
3 T

(2)
11 −

64

3
T

(3)
3 T

(3)
12

+
128

45
T

(33)
222 + (6 + 60ν)T

(1)
0 − 4ωT

(1)
1 − 48

5
(1 + 5ν)T

(2)
11

− 12ωT
(2)
2 − 64

15
(2 + 5ν)T

(3)
12 − 20ωT

(3)
3
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Discrete H3 Hamiltonian

Discrete H3 system

The existence of the algebraic form of the Hamiltonian allows us to
construct a discrete system with a property of isospectrality.

Let us introduce three pairs of finite difference operators

D(δi )
i =

(eδi∂i − 1)

δi
,

X (δi )
i = (τie

−δi∂i ) ,

where i = 1, 2, 3. They realize a three parametric canonical
transformation in 3 + 3 phase space

[D(δi )
i ,D(δj )

j ] = 0 , [X (δi )
i ,X (δj )

j ] = 0 , [D(δi )
i ,X (δj )

j ] = δij .
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Discrete H3 Hamiltonian

Take the linear differential operator L(∂i , τi ). Consider the
eigenvalue problem

L(∂i , τi ) ϕ(τ) = λ ϕ(τ)

with polynomial solutions

ϕ(τ) =
∑

αklmτk
1 τ l

2τ
m
3 .
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Discrete H3 Hamiltonian

Performing the canonical transformation (discretization) we arrive
at

L(D(δi )
i ,X (δi )

i ) ϕ(X (δi )
i ) |0〉 = λϕ(X (δi )

i ) |0〉

One should introduce the vacuum |0〉:

D(δi )
i |0〉 = 0 , i = 1, 2, 3. ⇒ |0〉 ≡ 1 .

The corresponding solutions are

ϕ̃(τ) =
∑

αklmτ
(k)
1 τ

(l)
2 τ

(m)
3 ,

where

τ
(n+1)
i = τi (τi − δi )(τi − 2δi ) · · · (τi − nδi ) (quasi-monomial).
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Discrete H3 Hamiltonian

Performing the canonical discretization for the H3 Hamiltonian in
the algebraic form hH3 we arrive at the isospectral finite-difference
operator

h̃H3 ≡ hH3(D
(δi )
i ,X (δi )

i ) =
∑

k1,k2,k3

Ak1,k2,k3 ek1δ1∂1+k2δ2∂2+k3δ3∂3

It is a 22-point finite-difference operator with the following
non-vanishing coefficients
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Discrete H3 Hamiltonian

A0,0,0 = − 4

δ1
(2 + δ1ω)

[
τ1

δ1
+

3τ2

δ2
+

5τ3

δ3

]
− 6

δ1
(1 + 10ν) ,

A1,0,0 =
2

δ1

[
2τ1

δ1
+

12τ2

δ2
+

20τ3

δ3
+ 3(1 + 10ν)

]
,

A−1,0,0 =
4

δ2
1

(1 + δ1ω)τ1 ,

A−2,0,0 =
48

5δ2
τ1(τ1 − δ1)

[
2τ2

δ2
+

5τ3

δ3
+ 1 + 5ν

]
,

A0,−1,0 =
12

δ1δ2
(2 + δ1ω)τ2 ,

A0,0,−1 =
5

2

[
8

δ1δ3
(2 + δ1ω) +

9

δ2
2

]
τ3 ,

A0,−3,0 =
128

45δ2
3

τ2(τ2 − δ2)(τ2 − 2δ2) ,
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Discrete H3 Hamiltonian

A1,−1,0 = −24τ2

δ1δ2
,

A1,0,−1 = −40τ3

δ1δ3
,

A−1,−1,0 = − 32

15δ3
τ1τ2

[
τ2

δ2
− 20τ3

δ3
− 5(1 + 2ν)

]
,

A−1,−2,0 =
32

15δ2δ3
τ1τ2(τ2 − δ2) ,

A−1,−1,1 =
32

15δ3
τ1τ2

[
τ2

δ2
− 10τ3

δ3
− 5(1 + 2ν)

]
,

A−1,−1,−1 = − 64

3δ2
3

τ1τ2τ3 ,

A−1,−2,1 = − 32

15δ2δ3
τ1τ2(τ2 − δ2) ,
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Discrete H3 Hamiltonian

A−2,1,0 = − 48

5δ2
τ1(τ1 − δ1)

»
τ2

δ2
+

5τ3

δ3
+ 1 + 5ν

–
,

A−2,−1,0 = − 48

5δ2
2

τ2τ1(τ1 − δ1) ,

A−2,0,−1 = − 48

δ2δ3
τ3τ1(τ1 − δ1) ,

A−2,1,−1 =
48

δ2δ3
τ3τ1(τ1 − δ1) ,

A0,1,−1 = −45τ3

δ2
2

,

A0,2,−1 =
45τ3

2δ2
2

,

A0,−3,1 =
256

45δ2
3

τ2(τ2 − δ2)(τ2 − 2δ2) ,

A0,−3,2 =
128

45δ2
3

τ2(τ2 − δ2)(τ2 − 2δ2) .
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Discrete H3 Hamiltonian
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Construction

Quasi-exactly-solvable generalization

Among the eigenfunctions of the Hamiltonian hH3 there is an
infinite family of eigenfunctions depending on the variable τ1.

They are solutions of the equation

−h1 ϕ ≡ −4τ1
∂2ϕ

∂τ2
1

+ (4ωτ1 − 6(1 + 10ν))
∂ϕ

∂τ1
= εϕ .

Corresponding eigenfunctions are given by Laguerre polynomials:

ϕn1(τ1) = L
(1/2+15ν)
n1 (ωτ1) , εn1 = 4ωn1 , n1 = 0, 1, 2, . . .
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Construction

The operator h1 can be rewritten in terms of the generators of the
Cartan subalgebra of sl(2) realized by the operators

J+
k = τ2

1

∂

∂τ1
− kτ1 , J0

k = τ1
∂

∂τ1
− k

2
, J− =

∂

∂τ1
,

These generators have a common invariant subspace

Pk = 〈τp
1 | 0 ≤ p ≤ k〉 , dimPk = (k + 1)

The operator h1 takes the sl(2)-Lie-algebraic form

h1 = 4J0
0J− − 4ωJ0

0 + 6(1 + 10ν)J− .

It preserves the infinite flag of spaces of polynomials

P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pk ⊂ · · · ,

and any eigenfunction is an element of the flag.
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Construction

Construction

Look for the QES Hamiltonian in the form

H(qes) = H+ V (qes)(τ1)

Gauge rotate: h(qes) = −2(Ψ0)
−1(H(qes) − E0)(Ψ0)

h(qes) should possess a τ1-depending family of eigenfunctions

One obtains the equation

−h
(qes)
1 ϕ ≡ −4τ1

∂2ϕ

∂τ2
1

+(4ωτ1−6(1+10ν))
∂ϕ

∂τ1
+2V (qes)(τ1)ϕ = εϕ
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1

+(4ωτ1−6(1+10ν))
∂ϕ

∂τ1
+2V (qes)(τ1)ϕ = εϕ
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Let us gauge rotate h
(qes)
1 :

h
(sl(2)−qes)
1 = τ−γ

1 exp
(a

4
τ2
1

)
h

(qes)
1 τγ

1 exp
(
−a

4
τ2
1

)
If V (qes) is chosen of the form

V (qes) =
1

2
a2τ3

1 +aωτ2
1−a

(
2k + 2γ + 15ν +

5

2

)
τ1+

γ(2γ + 30ν + 1)

τ1

then h
(sl(2)−qes)
1 is in sl(2)-Lie-algebraic form:

h
(sl(2)−qes)
1 = 4J0

kJ−− 4aJ+
k − 4ωJ0

k +2(k +4γ +3(1+10ν))J− .
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The operator h
(sl(2)−qes)
1 has Pk as an invariant subspace, but it

does not preserve a flag of spaces.

It has (k + 1) polynomial eigenfunctions of the form of polynomials
of the degree k,

P
(k)
j (τ1) =

k∑
i=0

γ
(j)
i τ i

1 , j = 0, 1, 2, . . . ,

while other eigenfunctions are not polynomials.
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sl(2)-quasi-exactly-solvable Hamiltonian associated with the root
space H3:

H(qes) =
1

2

3∑
k=1

[
− ∂2

∂x2
k

+ ω2x2
k +

g

x2
k

]
+
∑
{i ,j ,k}

∑
µ1,2=0,1

2g

[xi + (−1)µ1ϕ+xj + (−1)µ2ϕ−xk ]2

+
1

2
a2(x2)3 + aω(x2)2 − a

(
2k + 2γ + 15ν +

5

2

)
x2

+
γ(2γ + 30ν + 1)

x2
,

where {i , j , k} = {1, 2, 3} and all even permutations, and
x2 =

∑3
i=1 x2

i .
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Construction

We know (k + 1) eigenstates explicitly. Their eigenfunctions are of
the form

Ψk(x) = ∆ν
1∆

ν
2 (x2)γ · Pk(x2) e−

ω
2
x2− a

4
(x2)2

where Pk is a polynomial of degree k and g = ν(ν − 1) > −1
4 .
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An algebraic form for the H3 rational model exists. It acts on

the spaces of polynomials P(1,2,3)
n , n = 0, 1, 2, . . .

Eigenfunctions are elements of these spaces

An integral of motion exists. It has an algebraic form in τ
variables

The hidden algebra of the H3 model is the h(3) algebra, which
has infinite dimension but is finitely generated

It is possible to construct an isospectral discrete model and a
quasi-exactly-solvable generalization

Other integral(s) of motion has not been found yet

Why different minimal flags are preserved by h and f ?
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τ1 = x2
1 + x2

2 + x2
3 ,

τ2 = − 3

10
(x6

1 + x6
2 + x6

3 ) +
3

10
(2− 5ϕ+) (x2

1x4
2 + x2

2x4
3 + x2

3x4
1 )

+
3

10
(2− 5ϕ−) (x2

1x4
3 + x2

2x4
1 + x2

3x4
2 )− 39

5
(x2

1x2
2x2

3 ) ,
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τ3 =
2

125
(x10

1 + x10
2 + x10

3 ) +
2

25
(1 + 5ϕ−) (x8

1x2
2 + x8

2x2
3 + x8

3x2
1 )

+
2

25
(1 + 5ϕ+) (x8

1x2
3 + x8

2x2
1 + x8

3x2
2 )

+
4

25
(1− 5ϕ−) (x6

1x4
2 + x6

2x4
3 + x6

3x4
1 )

+
4

25
(1− 5ϕ+) (x6

1x4
3 + x6

2x4
1 + x6

3x4
2 )

− 112

25
(x6

1x2
2x2

3 + x6
2x2

3x2
1 + x6

3x2
1x2

2 )

+
212

25
(x2

1x4
2x4

3 + x2
2x4

3x4
1 + x2

3x4
1x4

2 ) .

Back to presentation
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F = −1

2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
+

2ν(ν − 1)

(sθcφ + ϕ+sθsφ + ϕ−cθ)2

+
2ν(ν − 1)

(sθcφ − ϕ+sθsφ + ϕ−cθ)2
+

2ν(ν − 1)

(sθcφ + ϕ+sθsφ − ϕ−cθ)2

+
2ν(ν − 1)

(sθcφ − ϕ+sθsφ − ϕ−cθ)2
+

2ν(ν − 1)

(sθsφ + ϕ+cθ + ϕ−sθcφ)2

+
2ν(ν − 1)

(sθsφ − ϕ+cθ + ϕ−sθcφ)2
+

2ν(ν − 1)

(sθsφ + ϕ+cθ − ϕ−sθcφ)2

+
2ν(ν − 1)

(sθsφ − ϕ+cθ − ϕ−sθcφ)2
+

2ν(ν − 1)

(cθ + ϕ+sθcφ + ϕ−sθsφ)2

+
2ν(ν − 1)

(cθ − ϕ+sθcφ + ϕ−sθsφ)2
+

2ν(ν − 1)

(cθ + ϕ+sθcφ − ϕ−sθsφ)2

+
2ν(ν − 1)

(cθ − ϕ+sθcφ − ϕ−sθsφ)2
+

ν(ν − 1)

2s2
θc2

φ

+
ν(ν − 1)

2s2
θ s2

φ

+
ν(ν − 1)

2c2
φ

.

Back to presentation
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